
Optimizing BEM computation
through compression and paralleization

Stefan Bornhofen, ETIS

13/01/2023

Plan

- Electromagnetic scattering problem and BEM

- H-matrix and ACA Compression

- Parallelization (OpenMP + MPI)

- Results

- Perspectives

Electromagnetic scattering problem
We consider the scattering problem of electromagnetic waves for a perfect conducting body with
a dielectric coating.

• We illuminate this system by incident electromagnetic waves.
• Electromagnetic waves propagate in Ω+ = Rn\Ω.
• Scattering waves occur as the incident waves bounce off in a variety of directions, depending on the

wavelength of the incident waves and the structure of the object.

Electromagnetic scattering problem
We define total electromagnetic fields (E, H) in Ω+ as:

Faraday’s Law
Maxwell’s Law

Boundary condition with impedance operator
Silver-Müller radiation condition

RCS
Radar Cross Section is a measure of how detectable an object is by radar.

where r is the observation distance.

High RCS values mean high radar detectability.

Stealth aircrafts are designed to have low RCS,
passenger airliners to have a high RCS.

BEM
The boundary element method (BEM) is a method of solving linear partial differential equations
which have been formulated in boundary integral form.

We introduce current densities J and M on the boundary Γ as

where []+− denotes difference between upper (+) and lower (-)
values of the interface, n is the exterior normal vector to the surface.

The Stratton-Chu integral representation
allows characterizing the electromagnetic
fields in terms of surface current densities.

The current densities are unknowns in the integral formulation of the problem. The knowledge of J
and M on the boundary of the volume is sufficient to determine the field throughout the space.

BEM
The boundary element method (BEM) is a method of solving linear partial differential equations
which have been formulated in boundary integral form.

We introduce current densities J and M on the boundary Γ as

where []+− denotes difference between upper (+) and lower (-)
values of the interface, n is the exterior normal vector to the surface.

The Stratton-Chu integral representation
allows characterizing the electromagnetic
fields in terms of surface current densities.

The current densities are unknowns in the integral formulation of the problem. The knowledge of J
and M on the boundary of the volume is sufficient to determine the field throughout the space.

Rao-Wilton-Glisson
We approach the surface of the obstacle by a surface Γh composed of finite number of triangles.
Ti for i = 1 to NT.

We denote by Ne the total number of edges of the mesh component Γh. Let {fi}i=1,Ne be a base of
Rao-Wilton-Glisson functions, where each function correspond to one edge. We decompose the
electric and magnetic currents:

The unknown variables to find are now: Ji and Mi, i=1…Ne

Rao-Wilton-Glisson
After discretization and using the RWG functions, the operators

can be written in matrix form

Final equation
For a mesh with N egdes, we end up with a system of linear equations with size 2*N.

1 2 … N 1 2 … N

=

J1

J2

…

JN

M1

M2

…

MN

E1

E2

…

EN

H1

H2

…

HN

Final equation
For a mesh with N egdes, we end up with a system of linear equations with size 2*N.

O(N²)

1 2 … N 1 2 … N

=

J1

J2

…

JN

M1

M2

…

MN

E1

E2

…

EN

H1

H2

…

HN

H-matrix
H-matrices allow creating a subdivided and
data-sparse representation of dense BEM-
matrices.

Idea: Split the matrix into sub matrices called
blocks by a recursive subdivision of the
geometry defining groups of edges, and by
permuting the indices (1..N) in the matrix such
that consecutive rows and columns correspond
to edges at a close distance.

Stop subdivision of block when

First optimization: Compression
It is known that dense matrix blocks representing the
interactions between two well-separated groups can
be accurately represented by a reduced set of
column vectors.

The diagonal blocks, which represent intra-group
interactions, as well as blocks of degenerated form
having few rows or columns are not admissible for
compression.

All other blocks correspond to interactions of well-
separated groups of edges and will be compressed
by the ACA algorithm.

ACA Compression
Adaptive Cross Approximation (ACA) is a greedy compression algorithm producing low-rank
approximations of a given matrix.

Let be a matrix of size nxm.

Construct an approximation

Such that

for a given tolerance eps.

ACA Compression
R is constructed by incrementally adding a rank-1 matrix.

For k=0 we have

We choose a simple and fast heuristic to define the pivots:

- find max|Rij| in the current row I

- then max|Rkj|in the chosen column j

Define uk and vk such that the product uk · vk exactly reproduces the entries of (Ik)th row and (Jk)th
column of the error matrix R(k) .

This process continues adaptively until

A compression of rank k requires to store k(m + n) entries instead of m*n entries.

Note that ACA compression also accelerates the matrix-vector product since Zv = UVv.

ACA Compression

ACA compression is unprofitable when k(m+n) > m*n

This happens quite often because for high frequencies we use eps as small as 10-9

In that case we abandon ACA compression and use the dense block. To accelerate the
generation of the dense block, we store the all the values which have been computed during
ACA compression so that we just need to compute the missing ones

- Advantage: gain time

- Drawback: temporarily allocate a matrix of size m*n

ACA Compression
Osaka frontal

mesh=SPH3, freqency=300Mhz,
coating thickness= 5mm, eps=5

SPH3 is a sphere discretized
into a triangle mesh with 2478
edges. The matrix size is
therefore 4956*4956.

Sequential filling without ACA: 381,08s
Matrix: 393Mb

Sequential filling with ACA: 454,68s (« FILL0 »)
Matrix: 259Mb (65% compression)
ACA compressed blocks: 28 out of 562 scheduled

Second optimization: Parallel Computing

Due to the independence of the blocks, H-matrix computing can be conveniently coupled with
parallel computing technologies to

1. distribute the memory load

2. accelerate the matrix filling

3. accelerate the matrix/vector product for fast iterative solvers.

OpenMP vs. MPI

OpenMP
for architectures with shared memory

MPI
for architectures with distributed memory

OpenMP vs. MPI

Hybrid OpenMP + MPI

HACApK
The HACApK library (Ida et al., 2014) provides a powerful generic programming framework for
CPU clusters with hybrid OpenMP + MPI parallelization, and more recently even GPU
parallelization (Ohshima et al., 2018).

We optimized HACApK for our use case notably in the matrix filling stage.

Parallel Computing
Filling

 The H-matrix blocks are assigned to the MPI processes. Each process will hold a share of the blocks.

 The MPI processes fill the blocks in parallel (dense or ACA).

 Multiple blocks of the same MPI process can be filled in parallel through OpenMP.

After the filling stage, the H-matrix is scattered over the MPI processes.

Solving (Matrix-vector product)

 Each MPI process multiplies its blocks with the vector and produces a partial result.

 Multiple blocks of the same process can be multiplied in parallel through OpenMP.

 The partial multiplications are broadcasted among the MPI processes and added up to the final product.

In the scope of this study, we only
concentrate on the filling stage

First result

Matrix filling with HACApK (« FILL1 »)

454,68s => 44,78s

10.15x faster

Osaka frontal (32 core)
16 MPI * 2 OpenMP

mesh=SPH3, freqency=300Mhz,
coating thickness= 5mm, eps=5

Static scheduling

Static scheduling (OpenMP and MPI)
may lead to unbalanced workload,
as the filling time is bound by the
last MPI node to finish.

Osaka frontal (32 core)
16 MPI * 2 OpenMP

mesh=SPH3, freqency=300Mhz,
coating thickness= 5mm, eps=5

MPI process 0 filling leaves 1 to 98
MPI process 1 filling leaves 99 to 252
MPI process 3 filling leaves 371 to 496
MPI process 4 filling leaves 497 to 590
MPI process 5 filling leaves 591 to 755
MPI process 6 filling leaves 756 to 842
MPI process 13 filling leaves 1492 to 1635
MPI process 14 filling leaves 1636 to 1770
MPI process 15 filling leaves 1771 to 1921
MPI process 2 filling leaves 253 to 370
MPI process 7 filling leaves 843 to 1001
MPI process 8 filling leaves 1002 to 1041
MPI process 9 filling leaves 1042 to 1170
MPI process 10 filling leaves 1171 to 1269
MPI process 11 filling leaves 1270 to 1419
MPI process 12 filling leaves 1420 to 1491
MPI process 8 finished in 23.97s, 40 blocks, mem= 0.03 Gb, compr= 57.8%
MPI process 0 finished in 26.94s, 98 blocks, mem= 0.02 Gb, compr= 36.1%
MPI process 7 finished in 30.22s, 159 blocks, mem= 0.01 Gb, compr= 100.0%
MPI process 2 finished in 30.52s, 118 blocks, mem= 0.01 Gb, compr= 98.0%
MPI process 3 finished in 30.53s, 126 blocks, mem= 0.01 Gb, compr= 96.7%
MPI process 14 finished in 31.16s, 135 blocks, mem= 0.01 Gb, compr= 74.8%
MPI process 1 finished in 31.35s, 154 blocks, mem= 0.01 Gb, compr= 100.0%
MPI process 6 finished in 31.39s, 87 blocks, mem= 0.02 Gb, compr= 97.8%
MPI process 12 finished in 32.19s, 72 blocks, mem= 0.03 Gb, compr= 43.6%
MPI process 5 finished in 32.67s, 165 blocks, mem= 0.01 Gb, compr= 100.0%
MPI process 10 finished in 34.23s, 99 blocks, mem= 0.02 Gb, compr= 80.5%
MPI process 11 finished in 35.50s, 150 blocks, mem= 0.01 Gb, compr= 100.0%
MPI process 13 finished in 35.85s, 144 blocks, mem= 0.01 Gb, compr= 100.0%
MPI process 15 finished in 36.35s, 151 blocks, mem= 0.01 Gb, compr= 99.7%
MPI process 9 finished in 37.89s, 129 blocks, mem= 0.01 Gb, compr= 99.0%
MPI process 4 finished in 44.78s, 94 blocks, mem= 0.04 Gb, compr= 61.7%

Static scheduling
HACApK uses a mean estimate of ACA-k in order to precompute the computational load for each
block (m*n for uncompressed and k*(m+n) for compressed blocks). This allows deciding upfront how
many blocks will be assigned to each MPI node, and then to each OMP thread.

However the estimation often turns out to be bad, especially in our use case where a lot of scheduled
ACA-compressions are rejected.

44,78s for k=7 (« FILL1 »)

time (s)

k

Dynamic OpenMP scheduling
Parallelizing loops is an OpenMP specialty.

The simple clause

!$OMP DO SCHEDULE(DYNAMIC)
do i=1,N

...

before a loop construct specifies that each
thread executes one element of the loop and
then requests another element until there
are no more elements available.

Dynamic OpenMP scheduling
Parallelizing loops is an OpenMP specialty.

The simple clause

!$OMP DO SCHEDULE(DYNAMIC)
do i=1,N

...

before a loop construct specifies that each
thread executes one element of the loop and
then requests another element until there
are no more elements available.

44,78s => 25,56s (« FILL2 »)

(1.75x faster)

time (s)

k

Dynamic MPI scheduling

Dynamic MPI scheduling reduces the workload imbalance, but adds management overhead.
Still, by chosing workload chunks of 10%-20%, it is typically faster than static scheduling (even with best k).

25,56s for static k=7 =>
23,80s for dynamic x=10% (« FILL3 »)

%

time (s)In a similar way (but with much more programming
effort) it is possible to parallelize loops in MPI.

For N MPI nodes, we only send x% of the planned
workload (which is 1/N of the total matrix) to each
MPI process. After finishing its work, the node
requests another x% of the workload until there is
no more work available.

Inter-matrix symmetry

EE

MM

EM

ME

1 2 … N 1 2 … N

Inter-matrix symmetry
1 2 … N 1 2 … N

However these blocks are
not necessarily on the same
MPI node to be computed
together.

EE

MM

EM

ME

Inter-matrix symmetry
Reorder the columns such
that the four values are
stored next to each other.

Apply symmetry calculus to
uncompressed blocks:

When vijEE is computed, we
compute vijMM, vijEM and
vijME at the same time and
benefit from mutual
intermediate values.

1 1 2 2 … N N

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)

Intra-matrix symmetry

EE

MM

EM

ME

1 2 … N 1 2 … N

Intra-matrix symmetry
The same symmetry for
the reordered columns:

1 1 2 2 … N N

Intra-matrix symmetry
Again these blocks are not
necessarily on the same MPI
node to be computed
together.

Assign a couple of symmetric
blocks to the same MPI node
(diagonal blocks do not have
an opposite).

Apply symmetry to
uncompressed blocks: When
block1 is filled, we fill block2
at the same time and benefit
from mutual intermediate
values.

1 1 2 2 … N N

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)
↓

13,93s (« FILL12 »)

Double ACA
1 1 2 2 … N N

When block1 is ACA
compressed, we compress
block2 at the same time and
benefit from mutual
intermediate values.

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)
↓

13,93s (« FILL12 »)
↓

6,17s (« FILL15 »)

Conclusion
- Adaptation of HACApK to our use case

- Universal and specific optimizations
- Dynamic scheduling (universal), approx. 2x faster than before
- Exploiting symmetries (use case specific), approx. 4x faster than before

- Experiment:

454,68s (sequential)=> 23,80s (parallel with dynamic scheduling) => 6,17s (symmetries)

Perspectives

- PEC-only version of bem-hoibc

- Parallelize IPO ?

- GPU-clusters instead of CPU-clusters ?

