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Electromagnetic scattering problem
We consider the scattering problem of electromagnetic waves for a perfect conducting body with 
a dielectric coating.

• We illuminate this system by incident electromagnetic waves.
• Electromagnetic waves propagate in Ω+ = Rn\Ω. 
• Scattering waves occur as the incident waves bounce off in a variety of directions, depending on the 

wavelength of the incident waves and the structure of the object. 



Electromagnetic scattering problem
We define total electromagnetic fields (E, H) in Ω+ as:

Faraday’s Law
Maxwell’s Law

Boundary condition with impedance operator
Silver-Müller radiation condition



RCS
Radar Cross Section is a measure of how detectable an object is by radar.

where r is the observation distance.

High RCS values mean high radar detectability.

Stealth aircrafts are designed to have low RCS, 
passenger airliners to have a high RCS.



BEM
The boundary element method (BEM) is a method of solving linear partial differential equations 
which have been formulated in boundary integral form.

We introduce current densities J and M on the boundary Γ as

where [ ]+− denotes difference between upper (+) and lower (-)
values of the interface, n is the exterior normal vector to the surface.

The Stratton-Chu integral representation
allows characterizing the electromagnetic
fields in terms of surface current densities. 

The current densities are unknowns in the integral formulation of the problem. The knowledge of J 
and M on the boundary of the volume is sufficient to determine the field throughout the space.
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Rao-Wilton-Glisson
We approach the surface of the obstacle by a surface Γh composed of finite number of triangles. 
Ti for i = 1 to NT.

We denote by Ne the total number of edges of the mesh component Γh. Let {fi}i=1,Ne be a base of 
Rao-Wilton-Glisson functions, where each function correspond to one edge. We decompose the 
electric and magnetic currents:

The unknown variables to find are now: Ji and Mi, i=1…Ne



Rao-Wilton-Glisson
After discretization and using the RWG functions, the operators

can be written in matrix form



Final equation
For a mesh with N egdes, we end up with a system of linear equations with size 2*N.
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H-matrix
H-matrices allow creating a subdivided and 
data-sparse representation of dense BEM-
matrices.

Idea: Split the matrix into sub matrices called 
blocks by a recursive subdivision of the 
geometry defining groups of edges, and by 
permuting the indices (1..N) in the matrix such 
that consecutive rows and columns correspond 
to edges at a close distance.

Stop subdivision of block            when



First optimization: Compression
It is known that dense matrix blocks representing the 
interactions between two well-separated groups can 
be accurately represented by a reduced set of 
column vectors.

The diagonal blocks, which represent intra-group 
interactions, as well as blocks of degenerated form 
having few rows or columns are not admissible for 
compression. 

All other blocks correspond to interactions of well-
separated groups of edges and will be compressed 
by the ACA algorithm.



ACA Compression
Adaptive Cross Approximation (ACA) is a greedy compression algorithm producing low-rank 
approximations of a given matrix.

Let                 be a matrix of size nxm.

Construct an approximation

Such that

for a given tolerance eps.



ACA Compression
R is constructed by incrementally adding a rank-1 matrix.

For k=0 we have 

We choose a simple and fast heuristic to define the pivots:

- find max|Rij| in the current row I

- then max|Rkj|in the chosen column j

Define uk and vk such that the product uk · vk exactly reproduces the entries of (Ik)th row and (Jk)th
column of the error matrix R(k) .

This process continues adaptively until 

A compression of rank k requires to store k(m + n) entries instead of m*n entries.

Note that ACA compression also accelerates the matrix-vector product since Zv = UVv.



ACA Compression

ACA compression is unprofitable when k(m+n) > m*n

This happens quite often because for high frequencies we use eps as small as 10-9

In that case we abandon ACA compression and use the dense block. To accelerate the 
generation of the dense block, we store the all the values which have been computed during
ACA compression so that we just need to compute the missing ones

- Advantage: gain time

- Drawback: temporarily allocate a matrix of size m*n



ACA Compression
Osaka frontal

mesh=SPH3, freqency=300Mhz, 
coating thickness= 5mm, eps=5

SPH3 is a sphere discretized
into a triangle mesh with 2478 
edges. The matrix size is
therefore 4956*4956.

Sequential filling without ACA: 381,08s
Matrix: 393Mb

Sequential filling with ACA: 454,68s (« FILL0 »)
Matrix:  259Mb (65% compression)
ACA compressed blocks: 28 out of 562 scheduled



Second optimization: Parallel Computing

Due to the independence of the blocks, H-matrix computing can be conveniently coupled with 
parallel computing technologies to

1. distribute the memory load

2. accelerate the matrix filling

3. accelerate the matrix/vector product for fast iterative solvers.



OpenMP vs. MPI 

OpenMP
for architectures with shared memory

MPI
for architectures with distributed memory



OpenMP vs. MPI 

Hybrid OpenMP + MPI



HACApK
The HACApK library (Ida et al., 2014) provides a powerful generic programming framework for 
CPU clusters with hybrid OpenMP + MPI parallelization, and more recently even GPU 
parallelization (Ohshima et al., 2018). 

We optimized HACApK for our use case notably in the matrix filling stage.



Parallel Computing
Filling 

 The H-matrix blocks are assigned to the MPI processes. Each process will hold a share of the blocks. 

 The MPI processes fill the blocks in parallel (dense or ACA).

 Multiple blocks of the same MPI process can be filled in parallel through OpenMP. 

After the filling stage, the H-matrix is scattered over the MPI processes.

Solving (Matrix-vector product)

 Each MPI process multiplies its blocks with the vector and produces a partial result.

 Multiple blocks of the same process can be multiplied in parallel through OpenMP. 

 The partial multiplications are broadcasted among the MPI processes and added up to the final product.

In the scope of this study, we only
concentrate on the filling stage



First result

Matrix filling with HACApK (« FILL1 »)

454,68s => 44,78s 

10.15x faster

Osaka frontal (32 core)
16 MPI * 2 OpenMP

mesh=SPH3, freqency=300Mhz, 
coating thickness= 5mm, eps=5



Static scheduling

Static scheduling (OpenMP and MPI) 
may lead to unbalanced workload, 
as the filling time is bound by the 
last MPI node to finish.

Osaka frontal (32 core)
16 MPI * 2 OpenMP

mesh=SPH3, freqency=300Mhz, 
coating thickness= 5mm, eps=5

MPI process 0 filling leaves 1 to 98 
MPI process 1 filling leaves 99 to 252 
MPI process 3 filling leaves 371 to 496 
MPI process 4 filling leaves 497 to 590 
MPI process 5 filling leaves 591 to 755 
MPI process 6 filling leaves 756 to 842 
MPI process 13 filling leaves 1492 to 1635 
MPI process 14 filling leaves 1636 to 1770 
MPI process 15 filling leaves 1771 to 1921 
MPI process 2 filling leaves 253 to 370 
MPI process 7 filling leaves 843 to 1001 
MPI process 8 filling leaves 1002 to 1041 
MPI process 9 filling leaves 1042 to 1170 
MPI process 10 filling leaves 1171 to 1269 
MPI process 11 filling leaves 1270 to 1419 
MPI process 12 filling leaves 1420 to 1491 
MPI process 8 finished in 23.97s, 40 blocks, mem= 0.03 Gb, compr= 57.8% 
MPI process 0 finished in 26.94s, 98 blocks, mem= 0.02 Gb, compr= 36.1% 
MPI process 7 finished in 30.22s, 159 blocks, mem= 0.01 Gb, compr= 100.0% 
MPI process 2 finished in 30.52s, 118 blocks, mem= 0.01 Gb, compr= 98.0% 
MPI process 3 finished in 30.53s, 126 blocks, mem= 0.01 Gb, compr= 96.7% 
MPI process 14 finished in 31.16s, 135 blocks, mem= 0.01 Gb, compr= 74.8% 
MPI process 1 finished in 31.35s, 154 blocks, mem= 0.01 Gb, compr= 100.0% 
MPI process 6 finished in 31.39s, 87 blocks, mem= 0.02 Gb, compr= 97.8% 
MPI process 12 finished in 32.19s, 72 blocks, mem= 0.03 Gb, compr= 43.6% 
MPI process 5 finished in 32.67s, 165 blocks, mem= 0.01 Gb, compr= 100.0% 
MPI process 10 finished in 34.23s, 99 blocks, mem= 0.02 Gb, compr= 80.5% 
MPI process 11 finished in 35.50s, 150 blocks, mem= 0.01 Gb, compr= 100.0% 
MPI process 13 finished in 35.85s, 144 blocks, mem= 0.01 Gb, compr= 100.0% 
MPI process 15 finished in 36.35s, 151 blocks, mem= 0.01 Gb, compr= 99.7% 
MPI process 9 finished in 37.89s, 129 blocks, mem= 0.01 Gb, compr= 99.0% 
MPI process 4 finished in 44.78s, 94 blocks, mem= 0.04 Gb, compr= 61.7%



Static scheduling
HACApK uses a mean estimate of ACA-k in order to precompute the computational load for each
block (m*n for uncompressed and k*(m+n) for compressed blocks). This allows deciding upfront how 
many blocks will be assigned to each MPI node, and then to each OMP thread. 

However the estimation often turns out to be bad, especially in our use case where a lot of scheduled
ACA-compressions are rejected.

44,78s for k=7 (« FILL1 »)

time (s)

k



Dynamic OpenMP scheduling
Parallelizing loops is an OpenMP specialty.

The simple clause

!$OMP DO SCHEDULE(DYNAMIC)
do i=1,N

...

before a loop construct specifies that each 
thread executes one element of the loop and 
then requests another element until there 
are no more elements available.
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Dynamic MPI scheduling

Dynamic MPI scheduling reduces the workload imbalance, but adds management overhead.
Still, by chosing workload chunks of 10%-20%, it is typically faster than static scheduling (even with best k).

25,56s for static k=7 =>
23,80s for dynamic x=10% (« FILL3 »)

%

time (s)In a similar way (but with much more programming 
effort) it is possible to parallelize loops in MPI.

For N MPI nodes, we only send x% of the planned 
workload (which is 1/N of the total matrix) to each 
MPI process. After finishing its work, the node 
requests another x% of the workload until there is 
no more work available.



Inter-matrix symmetry
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Inter-matrix symmetry
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However these blocks are 
not necessarily on the same
MPI node to be computed
together.
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Inter-matrix symmetry
Reorder the columns such
that the four values are 
stored next to each other.

Apply symmetry calculus to 
uncompressed blocks: 

When vijEE is computed, we
compute vijMM, vijEM and
vijME at the same time and 
benefit from mutual
intermediate values.

1 1 2 2 …                                                           N N

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)



Intra-matrix symmetry
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Intra-matrix symmetry
The same symmetry for 
the reordered columns:

1 1 2 2 …                                                          N N



Intra-matrix symmetry
Again these blocks are not 
necessarily on the same MPI 
node to be computed 
together.

Assign a couple of symmetric
blocks to the same MPI node
(diagonal blocks do not have 
an opposite).

Apply symmetry to 
uncompressed blocks: When
block1 is filled, we fill block2 
at the same time and benefit
from mutual intermediate
values.

1 1 2 2 …                                                           N N

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)
↓

13,93s (« FILL12 »)



Double ACA
1 1 2 2 …                                                           N N

When block1 is ACA 
compressed, we compress
block2 at the same time and 
benefit from mutual
intermediate values.

23,80s (« FILL3 »)
↓

16,01s (« FILL9 »)
↓

13,93s (« FILL12 »)
↓

6,17s (« FILL15 »)



Conclusion
- Adaptation of HACApK to our use case

- Universal and specific optimizations
- Dynamic scheduling (universal), approx. 2x faster than before
- Exploiting symmetries (use case specific), approx. 4x faster than before

- Experiment:

454,68s (sequential)=> 23,80s (parallel with dynamic scheduling) => 6,17s (symmetries)

Perspectives

- PEC-only version of bem-hoibc

- Parallelize IPO ?

- GPU-clusters instead of CPU-clusters ?


